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 General theory 1

1.1 Derivation of Bayesian theorem for multiple attributes 

DHI (Direct Hydrocarbon Indicator) risk modification, as applied in this study, is based on the 

Bayesian theorem, which is derived here for more than two events. A central role plays the 

term “conditional probability”. The conditional probability, designated as P(A | C), is regarded 

as the probability that an event A occurs after another event C has already occurred.  

 

Fig. 1. Venn diagram with two overlapping events A and C 

By making use of Venn diagrams we derive expressions of the various probabilities leading 

finally to the Bayesian theorem. Figure 1 shows two smaller rectangles inside a large 

rectangle, which represents the “total area”, a term used below. The two rectangles represent 

the probabilities of independent events A and C. Some of the events A and C occur together. 

Therefore, the two event-areas overlap, resulting in the area designated as A∩C or as AC. We 

can write the probabilities of all three events or event combinations as  

areatotal

Aofarea
AP )( ,         (1) 

areatotal

Cofarea
CP )( ,         (2) 

areatotal

CAofarea
CAP


 )( .        (3) 

For the conditional probability P(A | C) we investigate the probability of an event A, knowing 

that event C has already occurred. Therefore, we relate this probability no longer to the entire 

area but only to the area of event C 

Cofarea

CAofarea
CAP


)|( .        (4) 

In a similar way we can write 



   

DHI Bayesian risk modification  White Paper 

 

   4 

 

Aofarea

CAofarea
ACP


)|( .        (5) 

Combining the equations (1-5) we find 

)(

)(
)|(

CP

CAP
CAP


  and 

)(

)(
)|(

AP

CAP
ACP


  .    (6) 

Therefore, 

 )()|()()|()( APACPCPCAPCAP   .    (7) 

Finally we obtain Bayes’ theorem 

)(

)()|(
)|(

AP

CPCAP
ACP  .        (8) 

In cases where P(C|A) is impossible to be directly computed, Bayes’ theorem provides a 

feasible workaround by computing the “reverse” conditional probability P(A|C).  

How to compute P(A)? The numerator in eq. (8) can be regarded as the “contribution of event 

C to form the area of A” in Fig. 1. The remaining part of area A can be regarded as the 

“contribution of the event ‘non-C’”. Event C  (‘non-C’) is the complementary area to area C 

forming together the total area. Therefore, we can write 

  )()|()()|()( CPCAPCPCAPAP  ,       

with 

 1)()(  CPCP . 

We can generalize that approach by subdividing the total area of the rectangle in Fig. 1 into n 

non-overlapping sub-areas iC , which represent n mutually independent events, iC , ni ,1 . 

Then we write 

 



n

i

ii CPCAPAP
1

)()|()( ,        (9) 

with 





n

i

iCP
1

1)( .          (10) 

The Bayesian Theorem reads 

 





n

i

ii

jj

j

CPCAP

CPCAP
ACP

1

)()|(

)()|(
)|( , nj ,1 .      (11) 
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Fig. 2. Venn diagram with four possible exploration outcome scenarios (water, oil, gas, no 

reservoir) before incorporation of the amplitude anomaly (above). Taking into account the 

anomaly, only three possible scenarios (water, oil, gas) remain, with different relative area 

contributions (below). 

We use this approach to compute the conditional probability that a certain exploration 

success or failure scenario occurs after a geophysical (seismic) attribute anomaly has been 

found at the prospect. So we associate event A by one of the following geophysical 

observations: amplitude anomaly (AA), or flat spot (FS) or CSEM anomaly (EM). First, we 

choose only an amplitude anomaly AA. Events iC are then replaced by four well drilling 

outcomes, representing either a success (S) or failure (F) scenario; W= water, O = oil, G = gas 

or N = no reservoir found. These four events Ci (W, G, O, N), which are mutually exclusive, i.e. 

they cannot occur together, are assumed to represent all possible scenarios. They do not 

overlap in the Venn diagram (Fig. 2, upper part). The sum of all four individual areas is the 

total area, which is set equal to 1.  

We now analyse how the observation of an anomaly AA changes the probability of a certain 

success or failure scenario. For example we look at the gas success scenario and use eq. (11) 

with jC =G and A=AA 

)(

)()|(
)|(

AAP

GPGAAP
AAGP   .        
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P(G) is the a priori probability to find a gas scenario. The numerator represents the orange 

area “AA∩gas” in Fig. 2. The denominator is computed according to eq. (9) using the 4 

scenarios 

)()|()()|()()|()()|()( NPNAAPWPWAAPOPOAAPGPGAAPAAP  .    

The areas of AA and N are not overlapping. Therefore, the non-reservoir scenario cannot 

produce the amplitude anomaly, P(AA|N) = 0, whereas the a priori probability P(N) is not 

equal to zero. The Venn diagram at the bottom of Fig. 2 shows the result where only three 

events (scenarios) remain after the incorporation of the amplitude anomaly. The areas also 

have changed, the probability of water has reduced, the probability of hydrocarbons has 

increased. Gas is now more likely than oil. 

Finally, we like to emphasize the fact that the conditional probabilities, which need to be 

provided, are determined up to a constant factor. We show this by introducing a scaled 

version of the conditional probability 

  )|()|(*

ii CAPcCAP  .       (12) 

The constant factor c will cancel in eq. (11), leading to the same result. This has an important 

consequence. We do not need to compute the conditional probabilities in an absolute 

correct sense, but only in a relative correct sense. Only the mutual ratios between the 

probabilities are needed. 

When we have two geophysical anomalies, we must consider three events that potentially 

overlap in the Venn diagram. Figure 3 shows a Venn diagram with three events A, B and C 

that partially overlap. Like in the two-event case (Fig. 1) we can first consider the overlapping 

events A and B and write the conditional probability of event B, given that event A has 

already occurred. 

 

Fig. 3. Venn diagram with three overlapping events A, B, and C. 

In the same way as above we can write the conditional probability P(C|AB) of event C, given 

that events A and B have occurred, as 

)()|(

)(

)(

)(
)|(

APABP

CBAP

BAP

CBAP

BAofarea

CBAofarea
BACP












 ,  (13) 
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where )( CBAP  is the probability that all three events occur simultaneously, and eq. (7) 

has been used in the last step. 

This can be rewritten as  

)()|()|()( APABPBACPCBAP   .     (14) 

By cyclic change of events ( ACBA   ) we obtain 

)()|()|()( BPBCPCBAPCBAP  ,      (15) 

)()|()|()( CPCAPCABPCBAP  .      (16) 

Combining equations (14) and (16) and eliminating )( CBAP   we obtain the Bayesian 

theorem for three events 

)()|(

)()|()|(
)|(

APABP

CPCAPCABP
BACP


 .      (17) 

As mentioned above we introduce n mutually exclusive events Ci instead of one event C. The 

denominator can be computed as 

)()|()|()()|(
1

i

n

i

ii CPCAPCABPAPABP 


 ,     (18) 

with the condition that the n mutually exclusive events obey again eq. (10). 

Then we have  

 

)()|()|(

)()|()|(
)|(

1

i

n

i

ii

jjj

j

CPCAPCABP

CPCAPCABP
BACP







  nj ,1   .  (19) 

For the practical computation, we like to emphasize that we can evaluate eq. (19) in a 

sequential and not only in a simultaneous manner. We can consider the first attribute A and 

write the first updated a priori probabilities as (see eq. (11)) 

 





n

i

ii

jj

j

CPCAP

CPCAP
ACP

1

)()|(

)()|(
)|(ˆ , nj ,1 . 

This equation can be inserted in the similar equation for the second attribute B, which is 

 









n

i

ii

jj

j

ACPCABP

ACPCABP
BACP

1

)|(ˆ)|(

)|(ˆ)|(
)|( ,  nj ,1 . 

This yields back eq. (19). 
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The Bayesian theorem can be extended to even more events using the same logic. This would 

be necessary when we have more than two geophysical attributes.  

When the two events A and B are independent of each other we rewrite equations (19) as 

)()|()|(

)()|()|(
)|(

1

ii

n

i

i

jjj

j

CPCAPCBP

CPCAPCBP
BACP




   nj ,1   .   (20) 

We can calculate the two conditional probabilities P(B|C) and P(A|C) independently and 

multiply them. If the two events A and B, however, depend on each other to a certain extent 

we must use eq. (19) which has the same form as in the independent case, i.e. multiplication 

of probabilities, but now we have to determine the conditional probabilities in a correct 

manner and remember that )|()|( CBPCABP   and )()|( BPABP  . In any case, by 

physical reasons, we can expect that the order in which the two events are taken into 

account, has no impact on the final result. If we exchange A and B in the formula (17) we get 

)()|(

)()|()|(
)|(

BPBAP

CPCBPCBAP
BACP


 .      (21) 

Comparing eq. (17) and (21) and using eq. (7) (i.e. )()|()()|( APABPBPBAP   ) we find the 

necessary condition which must be fulfilled 

)|()|()|()|( CBPCBAPCAPCABP  .     (22) 

In the following, we continue our synthetic example, shown in Fig. 2. and introduce a second 

geophysical DHI attribute, which is considered to be independent from the first attribute (Fig. 

4).  
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Fig. 4. Venn diagram with four possible exploration outcome scenarios (water, oil, gas, no 

reservoir) before the incorporation of two DHI attributes AA and EM (above). Taking into 

account the two anomalies, only three possible scenarios (water, oil, gas) remain, with different 

relative area contributions (below), compared to the original situation as well as the situation 

after the first attribute (Fig. 2). 

 

Using eq. (20) we identify event A by an amplitude anomaly “AA”, event B by an 

electromagnetic anomaly “EM” and the Ci as our n exploration success and failure cases 

(water, oil, gas, no reservoir). For the gas success scenario we can write 

)()(

)()|()|(
)|(

AAPEMP

GPGAAPGEMP
EMAAGP  ,     (23) 

with 

)()|()|()()(
1

i

n

i

ii CPCAAPCEMPAAPEMP 


 .     (24) 

The application of the second EM DHI attribute changes again the probabilities of the three 

cases left after the first attribute (Fig. 4). The probability of water is further reduced.  
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Seismic and electromagnetic anomalies are certainly independent. If two seismic attributes 

are used, their degree of independency must be evaluated. This topic will be discussed in 

section 1.4. 

1.2 The uplift/downgrade potential of attribute anomalies 

We can summarize all ns success cases Si into one success case S and all nf failure cases Fi 

into one failure case F and rewrite eq. (11) 

)(
)()|()()|(

)|(
)|( SP

FPFAAPSPSAAP

SAAP
AASP


 ,     (25) 

with  





ns

i

ii SPSAAPSPSAAP
1

)()|()()|( ,      (26) 





nf

i

ii FPFAAPFPFAAP
1

)()|()()|( ,      (27) 





ns

i

iSPSP
1

)()( ,         (28) 





nf

i

iFPFP
1

)()( ,          (29) 

and the condition 

1)()(  SPFP .         (30) 

Then we define the ratio R of the two conditional probabilities P(AA|S) and P(AA|F)  




























ns

i

i

ns

i

i

nf

i

ii

ns

i

ii

SP

SP

FPFAAP

SPSAAP

FAAP

SAAP
R

1

1

1

1

)(

)(1

)()|(

)()|(

)|(

)|(
.    (31) 

Therefore, we can write eq. (25) 

)(
)()(

)|( SP
FPSPR

R
AASP


 ,       (32) 

or, using eq. (30), 

)(
)()1(1

)|( SP
SPR

R
AASP


 .       (33) 

Some authors define the inverse parameter RR 1
~
 . Then we get  
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)(
))(1(

~
)(

1
)|( SP

SPRSP
AASP


       (33b) 

If the two conditional probabilities are the same we have R equal to 1, then the coefficient in 

front of P(S) is equal to 1, too. The a priori probability does not change. In rare situations 

where the success case does not produce the observed anomaly AA R equals 0. Therefore, 

also the probability to have success, given the anomaly, is zero. The other extreme is that R 

becomes very large. It approaches infinity if the failure cases cannot produce the observed 

anomaly at all. In this case we see that the conditional probability to have a success, given the 

anomaly, approaches 1. 

The possible effect of an amplitude anomaly on the probability can be visualized in cross-

plots of posterior (final) probability versus prior (initial) probability (Fig. 5). Curves of equal R 

can be drawn. For each attribute one point can be inserted. From the location of this point we 

can graphically determine the corresponding R value as a QC.  

 

Fig. 5. Cross-plot of posterior (final) probability versus prior (initial) probability. Curves of equal 

R in the range from 0.1 to 10 are plotted.  

When we have two DHI attributes, say the first one is an amplitude anomaly AA as above and 

the second one is an electromagnetic anomaly EM, then we can again analyse the effect of 

each of them by corresponding Ri ratio factors. For the first attribute we re-write eq. (33) as  

)(
)()1(1

)|(
1

1 SP
SPR

R
AASP


 .       (34) 

This is the a priori success probability for the second attribute equation 

)|(
)|()1(1

)|(
)(

)|(
)|(

2

2 AASP
AASPR

R
AASP

EMP

SEMP
AAEMSP


 . (35) 

Inserting eq. (34) in (35) we obtain as an intermediate result 
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)(
)()1()()1(1

)|(
121

21 SP
SPRRSPR

RR
AAEMSP


 ,    (36) 

which finally becomes 

)(
)()1(1

)|(
21

21 SP
SPRR

RR
AAEMSP


 .      (37) 

This equation has the same form as eq. (33). We see that the separate ratio factors Ri must be 

multiplied to give the combined ratio factor R. If one attribute is neutral, the corresponding Ri 

factor will be 1. 

1.3 Calculating the DHI strength 

The so-called DHI strength can be defined, which is a measure of the confidence we have in a 

DHI. This value can for example be used at volume calculations to integrate the DHI 

information with a priori volume distributions. 

We define the DHI strength T as 

)(1

)()|(

SP

SPAASP
T




 .        (38) 

This is the difference of final to initial probability of success, due to an amplitude anomaly 

AA, normalized to the maximum possible difference. If the two probabilities are the same, i.e. 

the DHI could not increase the a priori probability, T is zero. The maximum value P(S|AA) can 

take is 1. Then T equals one. If the final probability is smaller than the initial one, T becomes 

negative.  

Please note that the quantity T is not defined for P(S) = 1. If P(S) goes to 1, P(S|AA) 

approaches P(S) (see eq. 33), and therefore, both the numerator and denominator in eq. (38) 

approach 0. However, we see below, that T approaches the limiting value (R-1)/R, when P(S) 

goes towards 1. Therefore, only in the limit of R approaching infinity, T approaches 1. 

Using eq. (33) 

)(1
)()1(1

)()|( SP
SPR

R
SPAASP 











 ,       (39) 

or 

  
)(

)()1(1

)(11
)()|( SP

SPR

SPR
SPAASP 












 .      (40) 

Therefore the DHI strength T is 

 
)()1(1

)(1

SPR

SPR
T




 .          (41) 
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It depends both on R and the initial success probability P(S) (Fig. 6). 

 

Fig. 6.  Cross-plot of DHI strength versus prior (initial) probability. Curves of equal, positive R in 

the range from 1 to 10 are plotted. Compare to Fig. 5. 

 

1.4 Independence of geophysical attributes 

Seismic and electromagnetic anomalies are certainly independent. In these cases, we can use 

eq. (20), or (23)-(24). If we want to use two seismic attributes from the same seismic data set, 

we must be cautious and evaluate first the degree of independency. If we have two seismic 

attributes, for example an amplitude anomaly (AA) and a flat spot (FS), we first have to keep 

the possible dependency in our formulas and use eq. (19), for example, for the final 

probability of the gas scenario as 

)()|()|(

)()|()|(
)|(

1

i

n

i

ii CPCAAPCAAFSP

GPGAAPGAAFSP
FSAAGP







  . 

The terms like )|( GAAFSP   are “double scenario conditional probabilities”, i.e. the 

probability of encountering event FS might depend on the occurrence of the two events, here 

AA and G. In other words, we must not consider only the probability to observe a flat spot FS 

for a gas scenario in general, )|( GFSP , but need to take into account that we already have 

observed an amplitude anomaly AA. This previous observation of an amplitude anomaly will 

change the probability of a flat spot for the gas and the other scenarios. In general the 

inequality )|()|( GFSPGAAFSP  holds. 

Typical seismic attributes that we can make use of, both in the reflectivity as well as in the 

impedance domain, are 
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 Full stack amplitude 

 Offset- or angle-range limited stack 

 Intercept 

 Gradient 

 Linear weighted combination of intercept and gradient, for example fluid factor 

 Acoustic or elastic impedances 

All of the above attributes could be evaluated for both top and base reservoir reflections 

separately. Another possibility is a flat spot as an additional event. Flat spots can be 

observed when the reservoir is thick enough and the dip of the structure and the SN-ratio 

large enough. A pitfall with flat spots could be paleo-contacts. The main question here is 

whether the characteristics of the top reflection, the base reflection and the flat spots are 

really independent of each other, so that we can use them as multiple attributes. We discuss 

this below. 

Most of the seismic attributes mentioned above are totally or partially dependent on each 

other. Only the two pre-stack attributes intercept and gradient can be regarded as 

theoretically independent, in first place, but as is well known from AVO analysis in intercept-

gradient cross-plots, the two have usually a strong correlation. The data points plot in 

ellipses.   The fluid factor FF is a linear weighted combination of the two, GbIaFF  . In 

practice, if we have access to I and G, we should use the fluid factor, which in most cases 

reveals to be appropriate and best discriminating all scenarios. In this manner we reduce the 

two observables into one attribute. One can show that we get the same result, if we 

subsequently use the intercept and gradient in a correct way, i.e. we take into account the 

correlation between the two attributes.  

Stacked amplitudes also depend on I and G. If we approximate the angle-dependent 

reflection coefficient by     sinGIR   the angle range limited stack amplitude is  

     







dGIS  



2

1

sin
1

,
12

21
.       (42) 

The simple integration yields the result 

  






 


2
sin, 21

21


 GIS .        (43) 

This is again a linear combination of I and G. Impedance differences above and below a 

reflecting interface are also related to the reflection coefficient of that interface. Impedances 

do not contain independent information compared to reflection coefficients. They represent 

the same information, just in another domain.  

In practice we most often approximate the a priori PDFs by Gaussian functions 

  
 

2

2

2

1

2

1











x

exf .        (44) 
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The conditional probability to produce an anomaly x=A by a water (w) and gas (g) scenario is 

written as 

  
 

2

2

2

1

2

1
w

wA

w

w eAf









 , and       (45) 

  

 
2

2

2

1

2

1
g

gA

g

g eAf









 .        (46) 

An example of two totally dependent attributes would be that the second attribute can be 

computed by a linear scale transformation from the first one. With a linear scale 

transformation,  

baxx ˆ  and          (47)  

baAA ˆ ,           (48) 

the means and variances of the Gaussian function change as follows 

 ba ii  ̂  , 222ˆ
ii a   .        (49) 

Therefore, the transformed (double) conditional probabilities are  

  
   

     AfAAgAf
a

e
a

eAAh iii

A

i

A

i

i
i

i

i

i

|ˆ
1

2

11

ˆ2

1ˆ 2

2

2

2

2

1

ˆ

ˆˆ

2

1


















. (50) 

The last part of the equation represents the correct interpretation of the constant factor 1/a, 

which is the conditional probability of the scenario i to produce anomaly Â  having already 

observed anomaly A,  AAgi |ˆ . This means that the ratio R for the water and gas scenarios 

(see eq. (31)) remains the same after the application of the second attribute, obtained by the 

transformation, eq. (47), 

 
 
 

 
 

 

  112
|ˆ

|ˆ

ˆ

ˆ
RRR

Af

Af

AAg

AAg

AAh

AAh
R

w

g

w

g

w

g





 .     (51) 

This means that we must not apply the second attribute as if it were totally independent. 

Then we would obtain the wrong result 2

1RR  . The second attribute Â has the ratio R2  

 
 
 

1
|ˆ

|ˆ

2 
AAg

AAg
R

w

g
 ,         (52) 

because   niconstAAgi ,1,|ˆ  . This is a necessary condition for a neutral or “no effect” 

attribute. We see this by equating eq. (11) and (19), i.e. the attribute B has no effect. The 

conditional probabilities )|( jCABP   must be constant and equal for all j. 
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In practice, if we have pre-stack data with an AVO analysis (intercept and gradient attributes), 

we should try to combine both into a fluid factor type attribute. We have to always look for 

the attribute which is most discriminant for all scenarios. This could be full or angle range 

limited stack amplitude, if the intercept and gradient data are too noisy and inconclusive. 

Then we are done for the selected reflection event. Any other seismic attribute, also stack 

amplitudes are other combinations of intercept or gradient, and therefore totally dependent 

on the first attribute. 

Another candidate for a partly or fully independent attribute, however, is another seismic 

reflection related to the reservoir, for example the base of the reservoir reflection or a flat 

spot inside the reservoir. The reservoir must be thick enough in order that a base reflection 

or a flat spot can be identified and evaluated, in addition to the top reservoir reflection. For a 

flat spot it is also advantageous to have a dipping structure. The detectability and resolution 

depends on the seismic frequency bandwidth and SN ratio. For a homogeneous reservoir one 

can show that the flat spot amplitude can be expressed in terms of the top reflection 

amplitudes above and below the contact. In an exploration scenario we can compute the 

theoretical flat spot amplitude distribution and compare that to the observed flat spot 

amplitude distribution. If the two are the same, the occurrence of the flat spot is redundant 

information and must not be used a second time. If the two are dissimilar there is some 

independent information attached to the flat spot. The overlap of the two distributions is a 

measure of the independence. The same holds for the base reservoir reflection amplitudes. 

For a homogeneous reservoir the base reflection amplitude is a function of the top reflection 

amplitude plus a reflection coefficient at an interface between the layers above and below 

the reservoir, if they have different impedances.  

In any case we can introduce a dependency parameter D. It could be computed by the 

overlap area of the two distributions, the theoretical and the observed flat spot amplitude 

distribution. The parameter D varies between 0 (total independency) and 1 (total 

dependency). We can use this parameter D in the following relation 

)|()1()|( GFSPDDGAAFSP   

With this simplification approach we avoid the complicated evaluation of the “double 

scenario conditional probabilities”, which would not be feasible in practice. 
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